
Lab 2
Connect the Product API to a MySQL Database

Overview
In this lab, we will implement the generated subflows by connecting to a MySQL database.

Step 1: Implement Get Products Flow
In this step, you will implement the get:/product flow. To get the products from the database, you
will need to:

¥ Retrieve the records from the database.

¥ Transform the records to json format.

The following instructions will guide you through the process:

1. Locate the get product flow.

NOTE DOUBLE CHECK: Make sure you are working in the get:\product:api-config flow

2. Now you will add the Database connector to the flow.

You will see that the database connector is not in the palette. You need to add that module.

3. Go to the Mule Palette

4. Click Add Module

5. Select Database Connector .

6. Drag and Drop Icon to the light blue panel.

1

Going back to the Palette, you now will see the Database connector.

7. Click on the database connector, and drag and drop the Select icon before the transformation.

NOTE
DOUBLE CHECK: Drop the Database Connector in the Process section, not the
Source section.

8. Double-Click on the Database icon and a configuration panel will be shown.

9. Change its name to Get Products.

A best practice in Mule is to parameterize connectivity information. To configure the database

2

connector we will leverage this best practice.

10. Create a folder called config in src/main/resources

11. Create a file called configuration.yaml in the src/main/resources/config

12. Insert the following text into configuration.yaml file.

mysql:
Ê host: "services.mythicalcorp.com"
Ê port: "3306"
Ê user: "product"
Ê password: "Mule1379"
Ê database: "products_test"

N.B. The password can be encrypted using the Mule Credential Vault.

13. Save the configuration.yaml file

14. Go back to the api.xml file. Press the Global Elements tab.

3

15. Press the Create button and search for Configuration Properties

16. Press OK.

17. in the file text box write config/configuration.yaml . You can also browse to the file.

4

18. Now that you have your properties defined, letÕs add a new connector configuration.

Go back to the database connector you dropped, click to open properties and click on the
button on the Connector Configuration.

19. In Name write Products_Database_Configuration

20. In Connection select MySQL Connection.

When you select the database connection it asks you to add the JDBC Driver.

21. Press ConfigureÉ button. A new window will open.

22. Select Add Maven depenency

23. Complete with the following data:

! Group id : mysql

! Artifact id : mysql-connector-java

! Version : 5.1.46

5

24. Click Finish .

25. For our database configuration specify the following values for the properties:

! Host : ${mysql.host}

! Port : ${mysql.port}

! User : ${mysql.user}

! Password : ${mysql.password}

! Database : ${mysql.database}

6

NOTE
Mule resolves the ${key} to the configuration properties that we put in the
configuration.yaml file by default without any extra configuration needed.

26. Click Test Connection to verify the connectivity

27. Click OK

28. Click OK again to close the MySQL Configuration.

Now that we have the Database configured, we will add the query.

7

SELECT p.id, p.name, p.description, p.product_number, p.manufactured, p.colors,
p.categories, p.stock, p.safety_stock_level, p.standard_cost, p.list_price, p.size,
p.size_unit_measure_code, p.weight, p.weight_unit_measure_code,
p.days_to_manufacture, p.images, p.modified_date, p.created_date
FROM product p
LIMIT 10

NOTE
We are limiting the query to retrieve only up to 10 items with the "LIMIT 10"
parameter.

NOTE
Many customers use their favorite query tool (SQL Query Analyzer, TOAD,
DBVisualizer, É) to craft the query they want and then paste it into textbox in
Studio.

Now we need to transform the records from the database to JSON format.

29. Double-Click on the Transform Message icon. You will find the fields that come from the query
on the left, and the fields that the API will return on the right. You can graphically map fields by
dragging between fields.

This Transform Message component uses MuleSoftÕs universal DataWeave transformation
language for transforming data from what format to another. There is no need to use
xpath/XSLT for XML, code for JSON, code for CSV, etc. Use DataWeave for all transformations.
Dataweave is a simple, powerful tool to query and transform data inside of Mule.

8

30. Remove the actual mapping and copy the mapping below into the text view of the dataweave
transform.

%dw 2.0
output application/json

payload map (product, index) -> {
Ê id: product.id,
Ê categories: (product.categories default "") splitBy ",",
Ê colors: (product.colors default "") splitBy ",",
Ê createdDate: product.created_date as String {format: "yyyy-MM-dd"},
Ê modifiedDate: product.modified_date as String {format: "yyyy-MM-dd"},
Ê safetyStockLevel: product.safety_stock_level as Number,
Ê stock: product.stock as Number,
Ê daysToManufacture: product.days_to_manufacture,
Ê name: product.name,
Ê description: product.description,
Ê images: (product.images default "") splitBy ",",
Ê listPrice: product.list_price,
Ê manufactured: product.manufactured,
Ê productNumber: product.product_number,
Ê size: product.size,
Ê sizeUnitMeasureCode: product.size_unit_measure_code,
Ê standardCost: product.standard_cost,
Ê weightUnitMeasureCode: product.weight_unit_measure_code,
Ê weight: product.weight

}

NOTE

Since colours, categories and images are arrays and in the database they are
saved as comma-separated Strings, we added to add a function called Split By to
the mapping that splits the single record into a list of them separated by ",".
There are a number of functions available within Dataweave to support more
complex mapping requirements. See Dataweave documentation for more
information.

9

https://docs.mulesoft.com/mule-user-guide/v/3.8/dataweave

