
Lab 4
CI/CD Process - Automate Deployment

Overview
In this lab, we will learn how to integrate the deployment with a continous integration and
deployment tool. We are going to use Git as a version control system and Jenkins as the continuous
integration tool.

We are going to work with the OmniChannel API Implementation.

The completion of this lab will consist of a few steps:

1. Creating a Jenkinsfile and initializing a Git repo

2. Adding the Mule Maven Plugin configuration to the Mule pom.xml file.

3. Creating a Pipeline Jenkins job

4. Creating a post-commit file to automate a Jenkins job process after each git commit

To complete this workshop you need a Jenkins server and git gui. If you run the Lab in the EC2
instance, there is a Jenkins server installed. If you are running in your own machine, you can
install Jenkins from here

Be sure to have the following plugins:

¥ Blue Ocean

¥ Build Pipeline plugin

¥ Pipeline

This lab use git as the version controller. If you donÕt have git installed on your mahcine, you can
get it from here

Step 1: Setup Jenkins and initialize a Git repo
To get started we need to start up the Jenkins server and create a Git repository. In the following lab
we will be using 'Git-Gui' to manage our git operations.

1. Navigate to the Desktop of the VM. Open up the Jenkins server application by clicking the icon
that looks like the following:

2. Wait until you see a black command prompt box appear titled Jenkins Service . It will look as
the following:

1

https://jenkins.io/download/
https://git-scm.com/downloads

NOTE
The Jenkins service will take several minutes to start, allow the process to run in
the background in parallel while we complete the rest of the lab.

3. Navigate to the Desktop of the VM. Open up the Git Gui application by clicking the icon that
looks like the following:

4. Select Create New Repository . Insert the location of your project into the Directory field. If
you followed the steps in Lab 1 you may use the following path. Note that if you are using your
own project the name of the project may differ:

C:/Users/workshop/AnypointStudio/studio-workspace/omni-channel-api

5. Select the Create button. Your Mule project will be initialized within Git and you will be taken
to the Git Gui management console.

6. Review the unstaged commits then select the Stage Changed button.

2

NOTE
As a good practice we only commit the files needed to be able to successfully
make the build. The compiled classes .class files should not be under version
control. You could create .gitignore file to let git ignore those files.

7. Click Yes if given an additional prompt to stage the untracked files.

8. You will now see the changes moved from Unstaged Changes to Staged Changes . Enter your
commit message to be:

Init Git repository

9. Click the Commit button to commit your project.

3

Now that you have initialized your Git repository, we are going to configure the Mule Maven
Plugin.

Step 2: Configure the Mule Maven plugin
We saw in lab 1 that we can deploy using Studio. We can also export as a Jar file and deploy an
application from the Anypoint Platform UI.

A third option is to use the Mule Maven Plugin. To do that we are going to update the file pom.xml

1. Navigate back to the Package Explorer located on the right-side of your Anypoint Studio IDE.
Open up the pom.xml file located in the root directory of the project.

2. Move the cursor inside the <plugin> element, child element <configuration>. You will add a
configuration for your CloudHub deployment inside the <configuration> element at the next
step

3. Copy & paste the following xml code on this new line within your <configuration> element:

<cloudHubDeployment>
Ê <uri>https://anypoint.mulesoft.com</uri>
Ê <muleVersion>${mule.version}</muleVersion>
Ê <!-- Deploy User Parameter -->
Ê <username>${anypoint.username}</username>
Ê <password>${anypoint.password}</password>
Ê <!-- Environment Parameter -->
Ê <environment>${cloudhub.environment}</environment>
Ê <applicationName>${cloudhub.app}</applicationName>
Ê <businessGroup>${cloudhub.bg}</businessGroup>
Ê <workerType>${cloudhub.worker}</workerType>
</cloudHubDeployment>

TIP
You can reformat the XML code to look nicer by right-clicking anywhere on the
pom.xml editor canvas and selecting Source > Format .

You can see a lot of parameters.

! muleVersion: itÕs the Mule Runtime version.

! username and password: These are the credentials to deploy into the platform.

! environment: This is the environment were is going to be deployed (Sandbox, Production)

! applicationName: Name of the Mule application.

! businessGroup: Name of the business group where is going to be deployed.

! workerType: Size of the worker where is going to by deployed.

More info can be found here

These parameters are going to be set later when we run the Maven command.

4

https://docs.mulesoft.com/mule-runtime/4.2/mmp-concept#cloudhub-deployment-reference

We have just added a configuration to deploy it to Cloudhub. In the next step we are going to
configure the Jenkins pipeline.

Step 3: Create a Pipeline
Pipelines provides a number of immediate benefits:

¥ Code review/iteration on the Pipeline

¥ Audit trail for the Pipeline

¥ Single source of truth for the Pipeline, which can be viewed and edited by multiple members of
the project.

1. On the left side of the window, you will find the Package Explorer . Right click on the root of
your project and select New > File .

5

